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Abstract: We investigate triangle UD ladder integrals in the position space. The inves-

tigation is necessary to find an all-order in loop solution for an auxiliary Lcc correlator

in Wess-Zumino-Landau gauge of the maximally supersymmetric Yang-Mills theory and

to present correlators of dressed mean gluons in terms of it in all loops. We show that

triangle UD ladder diagrams in the position space can be expressed in terms of the same

UD functions Φ(L), in terms of which they were represented in the momentum space, for

an arbitrary number of rungs.
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As has been shown in refs. [1]–[12], Slavnov-Taylor (ST) identity predicts that the

correlators of dressed mean fields for N = 4 supersymmetric Yang-Mills theory in the

position space can be represented in terms of Usyukina-Davydychev (UD) integrals (at

least at the two loop planar level). Indeed, at that level the auxiliary Lcc correlator in the

position space in Wess-Zumino-Landau gauge of the maximally supersymmetric Yang-Mills

theory is a function of Davydychev integral J(1, 1, 1) [4 – 6] which is the first integral in the

chain of UD integrals [13 – 15]. By using ST identity, we can express all the correlators in

terms of this correlator in that theory. Furthermore, using the method of ref. [6], one can

expect that at the higher loop orders in the position space the triangle UD ladder integral

contributions to that auxiliary correlator will survive only. Strictly speaking, the powers of

d‘Alambertian applied to the L-field vertex of the triangle ladder will contribute only. In

this paper we show that such constructions are the UD functions of the spacetime intervals.

Conformal invariance of the effective action of dressed mean fields in the position space,

suggested in refs. [1 – 3], corresponds to the property of conformal invariance of the UD

functions in the position space.

The UD integrals correspond to the momentum representation of three-point ladder

diagrams (triangle ladders) and four-point ladder diagrams and were defined and calculated

in refs. [14, 15] in the momentum space, and the result can be written in terms of the UD

functions Φ(L) of conformally invariant ratios of momenta.1 In the momentum space it

was shown that the UD functions are the only contributions (at least up to three loops) to

off-shell four-point correlator of gluons that corresponds to four gluon amplitude [18, 19].

The conformal invariance of UD functions was used in the momentum space to calculate

four-point amplitude and to classify all possible contributions to it [20, 21]. Later, the

conformal symmetry in the momentum space appeared on the string side in the Alday-

Maldacena approach [22] in the limit of strong coupling.

In this paper we use two things known from the literature. These are the iterative

definition of the UD functions, that is eq. (23) of ref. [14], and the dual graphical represen-

tation for four-point momentum UD integrals in the form of “diamonds” [23, 18]. Before

starting the demonstration, we outline some basic points of it. In ref. [7] we have proved

the identity2

∫

d4y d4z
1

[2y][1y][3z][yz][2z]
=

1

[31]
Φ(2)

(

[12]

[31]
,
[23]

[31]

)

(1)

by conformal transformation of the integrand. The l.h.s. of this relation corresponds to

the l.h.s. of the line (a) of figure 1. In this paper we assume the notation of ref. [4],

where [Ny] = (xN − y)2 and analogously for [Nz] and [yz], that is, N = 1, 2, 3 stands for

xN = x1, x2, x3, respectively, throughout all the paper. In the momentum space, eq. (1)

might be understood as a relation between the momentum integrals that correspond to the

l.h.s. and the r.h.s. of figure 2 of ref. [24] which was derived by using the trick of integration

1In the position space Feynman diagrams contain integrations over coordinates of internal vertices.

Integration over internal vertices appears in dual representation of the momentum diagrams too [16, 17]
2Our definition for UD functions is Φ

(L)
New = (π2)LΦ

(L)
Old, where Φ

(L)
New is Φ(L) of this paper, and Φ

(L)
Old is

the original UD function Φ(L) of refs. [14, 15].
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by parts. However, in ref. [24] the position space picture was not analysed and it was not

shown that Fourier transform of the second UD integral is the same integral [7]. Here we

demonstrate the validity of a similar property for any UD function.

The line (b) of figure 1 is figure 5 of ref. [7]. It corresponds to the equation

∂2
(2)

∫

Dy Dz
1

[2y][1y][3z][yz][2z]
= −

4[31]

[12][23]
J(1, 1, 1). (2)

This equation has been generated by the computer program of ref. [6] by making use of

formulas of refs. [4, 5] derived by Gegenbauer polynomial technique. Without modifications

of the integral measure made in ref. [4] this equation is3

∂2
(2)

∫

d4y d4z
1

[2y][1y][3z][yz][2z]
= −

4π2[31]

[12][23]
J(1, 1, 1). (3)

In ref. [25] this equation was obtained by direct differentiation of the second UD integral.

It can be demonstrated in several ways. For example, the direct differentiation of the r.h.s.

of eq. (1) using the eq. (23) of ref. [14] and eq. (12) of ref. [15] produces

∂2
(2)

1

[31]
Φ(2)

(

[12]

[31]
,
[23]

[31]

)

= [31]∂2
(2)

1

[31]2
Φ(2)

(

[12]

[31]
,
[23]

[31]

)

= [31]∂2
(2)C

(2)([12], [23], [31])

= [31]∂2
(2)

∫

d4y
C(1)([(12) + y], [(23) − y], [31])

[(12) + y] [(23) − y] [y]

= [31]∂2
(2)

∫

d4y
C(1)([(12) − y], [(32) − y], [31])

[(12) − y] [(32) − y] [y]

= [31]∂2
(2)

∫

d4y
C(1)([1y], [3y], [31])

[1y] [2y] [3y]

= −4π2[31]

∫

d4y δ(2y)
C(1)([1y], [3y], [31])

[1y] [3y]

= −4π2[31]
C(1)([12], [23], [31])

[12] [23]

= −
4π2

[12][23]
Φ(1)

(

[12]

[31]
,
[23]

[31]

)

. (4)

On the other hand, by using conformal transformation the r.h.s. of eq. (3) and eq. (4) can

be related. Three-point UD functions can be transformed to four-point UD functions due

to Jacobian of conformal transformation, since under this transformation each three-point

internal vertex transforms to four-point internal vertex with a new leg growing from the

internal vertex to the point 0 which is the inition of the reference system. The conformal

substitution for each vector of the integrand (including the external vectors) is

yµ =
y′µ

y′2
, zµ =

z′µ

z′2
, (5)

3All internal vertices of the diagrams in this paper correspond to the standard four-dimensional integral

measure.
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Figure 1: Chain of transformations
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Figure 2: Transformation of two rungs diagram

and in the simplest case of the first UD function we have

J(1, 1, 1) =

∫

d4y
1

[1y][2y][3y]
= [1′][2′][3′]

∫

d4y′
1

[1′y′][2′y′][3′y′][y′]

= [1′][2′][3′]
1

[3′1′][2′]
Φ(1)

(

[1′2′][3′]

[3′1′][2′]
,
[1′][2′3′]

[3′1′][2′]

)

=
[1′][3′]

[3′1′]
Φ(1)

(

[1′2′][3′]

[3′1′][2′]
,
[1′][2′3′]

[3′1′][2′]

)

=
1

[31]
Φ(1)

(

[12]

[31]
,
[23]

[31]

)

.

The line (c) is the direct use of the line (b) and, as it can be proved by the sequence

of transformations depicted in figure 2, its r.h.s. is proportional to Φ(3), indeed

∫

d4y d4z d4u
1

[2y][2u][2z][3z][1y][uz][uy]

= [2′]3[3′][1′]

∫

d4y′ d4z′ d4u′
1

[2′y′][2′u′][2′z′][3′z′][1′y′][u′z′][u′y′][y′][z′][u′]

= [2′]3[3′][1′]
1

[3′1′][2′]3
Φ(3)

(

[1′2′][3′]

[3′1′][2′]
,
[1′][2′3′]

[3′1′][2′]

)

=
[3′][1′]

[3′1′]
Φ(3)

(

[1′2′][3′]

[3′1′][2′]
,
[1′][2′3′]

[3′1′][2′]

)

=
1

[31]
Φ(3)

(

[12]

[31]
,
[23]

[31]

)

. (6)

The factor −4π2 on the r.h.s. of the line (c) came from eq. (4).

The line (d) can be obtained by the direct differentiation of the previous result,

∂2
(2)

1

[31]
Φ(3)

(

[12]

[31]
,
[23]

[31]

)

=

= [31]2∂2
(2)

1

[31]3
Φ(3)

(

[12]

[31]
,
[23]

[31]

)

= [31]2∂2
(2)C

(3)([12], [23], [31])

= [31]2∂2
(2)

∫

d4y
C(2)([(12) + y], [(23) − y], [31])

[(12) + y] [(23) − y] [y]
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= [31]2∂2
(2)

∫

d4y
C(2)([(12) − y], [(32) − y], [31])

[(12) − y] [(32) − y] [y]

= [31]2∂2
(2)

∫

d4y
C(2)([1y], [3y], [31])

[1y] [2y] [3y]
=

= −4π2[31]2
∫

d4y δ(2y)
C(2)([1y], [3y], [31])

[1y] [3y]
= −4π2[31]2

C(2)([12], [23], [31])

[12] [23]

= −
4π2

[12][23]
Φ(2)

(

[12]

[31]
,
[23]

[31]

)

. (7)

Using this and taking into account the line (a) and the result for it represented by eq. (1)

we have obtained the r.h.s. of line (d).

The line (e) is the direct use of the line (d). The r.h.s. of the line (e) is proportional to

1

[31]
Φ(4)

(

[12]

[31]
,
[23]

[31]

)

. (8)

The proof of this statement repeats proof (6), the only difference is that instead of three

internal vertices between the points 1 and 3 on the r.h.s. of the line (c), we have four

internal vertices for the r.h.s. of the line (e).

The line (f) is the repetition of the trick of eq. (4) and eq. (7) with the lines (b) and

(d). Indeed, applying d’Alambertian to eq. (8), we obtain

∂2
(2)

1

[31]
Φ(4)

(

[12]

[31]
,
[23]

[31]

)

= −
4π2

[12][23]
Φ(3)

(

[12]

[31]
,
[23]

[31]

)

. (9)

Using this and taking into account the line (c) and the result for its r.h.s. represented by

eq. (6) we have obtained the r.h.s. of the line (f).

The line (g) is the direct use of line (f). Repeating the proof of eq. (6) we obtain that

the r.h.s. of the line (g) is proportional to

1

[31]
Φ(5)

(

[12]

[31]
,
[23]

[31]

)

.

We can proceed this chain of constructions to an arbitrary number of rungs, and

analysing the previous results and figure 1, we obtain for n-rungs triangle UD ladder

diagram Tn([12], [23], [31]) in the position space the following relations

(

∂2
(2)

)n−1
Tn([12], [23], [31]) =

(−4π2)n−1

[31]
Φ(n+1)

(

[12]

[31]
,
[23]

[31]

)

,

(

∂2
(2)

)n

Tn([12], [23], [31]) =
(−4π2)n

[12][23]
Φ(n)

(

[12]

[31]
,
[23]

[31]

)

,

(

∂2
(2)

)n

Tn+1([12], [23], [31]) =
(−4π2)n

[31]
Φ(n+2)

(

[12]

[31]
,
[23]

[31]

)

.

These relations show that the auxiliary Lcc correlator in the position space in the

maximally supersymmetric Yang-Mills theory can be represented in all loops in terms of

the UD functions. Indeed, according to the technique developed in ref. [6], any contribution

– 5 –
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to the correlator can be expressed in terms of powers of d’Alambertian applied to a leg of

scalar integrals. Using the graphical identity of refs. [7, 24] any four-point internal vertex

of those scalar integrals can be presented in terms of three-point internal vertices. Other

distributions of d’Alambertian produce Dirac delta-functions which will shrink one of the

integration in the position space. To find the coefficients in front of the UD functions

we need to solve Bethe-Salpeter equation for this double-ghost correlator. Furthermore, in

terms of this correlator all the correlators of dressed mean gluons can be expressed by using

Slavnov-Taylor identity. Thus, we can conclude that the correlators of dressed mean fields

in that theory which are off-shell correlators in the position space are very complicated

combinations of the three-point UD functions of space-time intervals.
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[6] G. Cvetič and I. Kondrashuk, Gluon self-interaction in the position space in Landau gauge,

arXiv:0710.5762, to appear in Int. J. Mod. Phys. A.

[7] I. Kondrashuk and A. Kotikov, Fourier transforms of UD integrals, arXiv:0802.3468, to

appear in “Analysis and Mathematical Physics”, Birkhauser.

[8] I. Kondrashuk, An approach to solve Slavnov-Taylor identity in D4 N = 1 supergravity, Mod.

Phys. Lett. A 19 (2004) 1291 [gr-qc/0309075].
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